Tuesday, May 21, 2013

Math Anxiety and the three domains and its continuum



The developers of the MARS (Math Anxiety Rating Scale) say it "involves feelings of tension and anxiety that interfere with the manipulation of numbers and the solving of mathematical problems in a wide variety of ordinary and academic situations" Richardson and Suinn, 1972, p.
There appear to be three major domains which are involved with the development of math anxiety. These domains are: the social/motivational domain, the intellectual domain, and the psychological/emotional domain.

The Social / Motivational Domain includes those forces that act upon a person through the family, friends, and society as a whole. The continuum associated with this domain is Behavior because although choices are influenced by others, they are ultimately made by the individual. The Behavior Continuum has Pursuit and Avoidance as its opposites. These behaviors are logical consequences of the value place on mathematics, which is influenced by the attitudes of significant others and by society in general.
The Intellectual / Educational Domain is comprised of those influences that are cognitive in nature. Specifically, they include but are not limited to, the knowledge and skills an individual has and or is expected to acquire and his or her perception of success or failure in them. Although others may "grade" an individual’s performance in this domain, people form their own evaluations of their performance in this area. The continuum associated with this domain is Achievement, where individual perception is paramount. Success and Failure are the extremes of the Achievement Continuum, and are the subjective evaluation regarding one’s acquisition or use of mathematics skill and concepts.
The Psychological / Emotional Domain is formed by the faculties that are affective in nature. It is largely comprised of the individual’s emotional history, reactions to stimuli and arousal states. Hence the continuum associated with this domain is Feelings. At either end of the Feelings Continuum lie in Anxiety and Confidence, although it could be argued that enjoyment is even further removed from anxiety than confidence. The assumption is that most students would find it puzzling to think of mathematics as enjoyable. Confidence can be equated with comfortableness, rather than pleasure

The extremes of the three continua comprise positive and negative cycles.
 
In the Positive Cycle, an individual who is successful in the use and/or study of mathematics will be more confident in situation involving math and more likely to pursue the study or use of mathematics.


A similar relationship is theorized for both confidence and pursuit because a person who pursues the study of mathematics will tend to be more confident in math situations and will also tend to be more successful in its study and use. The latter is a logical assumption, for if one does not continue the study of mathematics, one cannot continue to be successful in learning it.




Research indicates that the more confidence a person has vis-à-vis mathematics, the more likely he or she is to be successful in such tasks (Betz, 1977, p.22), and the more confidence the individual has toward learning and using mathematics, the more likely he or she is to pursue its study.

The Negative Cycle operates in a similar way, with each component reinforcing the others. Failure in mathematics contributes is hypothesized to be an antecedent to math anxiety (Tobias & Weissbrod, 1980, p. 65). Since few people seek opportunities for failure, it is logical that avoiding mathematics would be a result of perceived or actual failure.

Anxiety reactions to mathematical situations may contribute to failure in mathematics (Tobias & Weissbrod, 1980, p.63). In fact, s person who has high math anxiety may actually be unable to 
perform well on test, and may be unable to learn in a mathematics classroom. Math anxiety also 
directly contributes to avoiding mathematics (Tobias & Weissbrod, 1980, p.63). It is logical to avoid 
situations which bring on anxiety reactions.





The ways in which avoidance contributes to failure and anxiety are perhaps a little less clear. Avoidance of mathematics engenders failure because a person who has successfully avoided mathematical situations for some time may lack the skills and knowledge needed when he or she is presented with a situation requiring its use. This is situation in which the individual is very likely to fail. Similarly, the person who has avoided mathematics and is suddenly confronted with a circumstance requiring it, is likely to be painfully aware of his or her lack of preparation and become anxious about it as a result. Thus the avoidance of mathematics can lead to failure and/or anxiety with staggering effect. Of course, if one could only continue to avoid mathematics situations, neither failure nor anxiety would result.
The phenomenon of math anxiety itself is of interest to the education community only because individuals find themselves placed in situation requiring that they either use or learn mathematics, or both. Without conditions necessitating the use of mathematics, math anxiety, however high the individual’s level, would not be of any consequence. An underlying assumption of this model is that

math anxiety is of interest only to those people who have been influenced by it in the past, in career choices, for example, those who are influenced by it presently, as in a mathematics class, or those

who will in influenced by it in the future, as in a required math class or job skill. As long as a perseon has no need for mathematics, math anxiety is unimportant.







No comments:

Post a Comment